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Abstract
Recent advances in generalizing the renorm-group algorithm for boundary
value problems of mathematical physics and the related concept of the renorm-
group symmetry, previously formulated with reference to models based on
differential equations, are revisited. The algorithm and symmetry are now
formulated for models with nonlocal (integral) equations. Examples illustrate
how the updated algorithm applies to models with nonlocal terms appearing as
linear functionals of the solution.

PACS numbers: 02.20.Sv, 02.90.+p, 11.10.Hi

1. Introduction

The renorm-group symmetry (RGS) was introduced in mathematical physics in the beginning
of the 1990s as a result of combining the QFT Stueckelberg–Bogoliubov [1–3] renormalization
group (RG)4 generalized in a form of functional self-similarity [5] with the Sophus Lie group
formalism. Here, the central idea is tightly connected with Bogoliubov’s RG method [6] of
improving an approximate solution of the QFT problem in the vicinity of a solution singularity.

The first successful attempt [7] concerned applying RG ideas to a problem of generating
higher harmonics in a plasma. This problem, after some simplification, reduced to a pair of
partial differential equations (PDEs) with the boundary parameter (solution ‘characteristic’)
explicitly included. It was proved that these DEs admit an exact symmetry group then used to
construct the desired nonlinear solution of the boundary value problem (BVP) for nonvanishing
values of the boundary parameter.

4 The symmetry underlying the ‘QFT RG’ is an exact symmetry of a solution in contrast to some other constructions,
such as the ‘Wilson renormalization group’.

0305-4470/06/258061+13$30.00 © 2006 IOP Publishing Ltd Printed in the UK 8061

http://dx.doi.org/10.1088/0305-4470/39/25/S18
mailto:kovalev@imamod.ru
mailto:shirkovd@theor.jinr.ru
http://stacks.iop.org/JPhysA/39/8061


8062 V F Kovalev and D V Shirkov

The RG concept was transferred to mathematical physics with the same pragmatic goal
in mind: ‘improving’ the solution behaviour in the vicinity of a singularity. For the BVPs
based on DEs, we developed the RG algorithm (see, e.g., [7, 8] and the review [9]) that unites
the RG ideology of QFT with a regular symmetry construction procedure for BVP solutions.
Because of this algorithm, there also arose the concept of the RGS for BVP solutions: these
symmetries result from a calculation procedure similar to that used in modern group analysis.

Initially [7], applying the RG algorithm was mainly limited to problems based on DEs,
although this algorithm can be used formally in any problem for which a regular way of
calculating symmetries for the basic equations can be specified. Hence, transition to such
objects, which until recently were not a subject of group analysis, in particular, to integral and
integro-differential equations (IDEs), essentially expands the area of RGS applications.

In problems with involved equations, e.g., in transfer theory with integro-differential
Boltzmann equation or in QFT with an infinite chain of coupled integro-differential Dyson–
Schwinger equations, only some solution components or their integrated characteristics satisfy
a sufficiently simple symmetry. Thus, in the one-velocity plane transfer problem, the RGS
property is related [5] to the asymptotics of the ‘density of particles, moving deep into the
medium’ n+(x), x → ∞, not entering the Boltzmann equation5. In such problems, integral
relations form the problem skeleton. But they can appear as some independent objects for
applying the RGS constructed for solutions of DEs. Frequently, not the solution itself in its
entire range of the variables and parameters but rather some integral characteristic, a solution
functional, is of physical interest. This characteristic can appear, for example, as a result of
averaging (integrating) over one of the independent variables or of transition to a new integral
representation, for example, a Fourier representation.

This report is structured as follows. In section 2, one finds an introductory example of
the RGS algorithm in mathematical physics, illustrated by a solution of a simple BVP. In
section 3, a generalization of the RG algorithm, developed earlier for BVPs with DEs [8], is
reformulated for models with nonlocal terms, including integral equations and IDEs. Section 4
contains two examples of application of new algorithm. In the conclusion, we list some recent
results obtained by this modified RG algorithm and discuss feasible prospects.

2. Illustrative examples of the RGS algorithm

2.1. Notation, terminology and definitions

Generally, the RG can be defined as a continuous one-parameter group of specific
transformations of a partial solution (or solution characteristic) of a problem, a solution
that is fixed by boundary condition (BC). The RG transformation involves BC parameters and
corresponds to some change in how this condition is imposed.

For a given solution of some physical problem, the RG transformation is defined in the
simplest case as simultaneous one-parameter group transformations Rt of two variables, ξ

and g; for example,

Rt : {ξ → ξ ′ = ξ t, g → g′ = ḡ(t, g)}, (1)

the first being the scaling of a coordinate ξ (or reference point) and the second—a more
complicated functional transformation of a solution characteristic g. Hence, the RG
transformation corresponds to a change in the parameterization for the same solution, and
the function ḡ satisfies the equation

ḡ(ξ t, g) = ḡ(ξ, ḡ(t, g)), ḡ(1, g) = g, (2)

5 This is representable as the integral
∫ 1

0 n(x, ϑ) d cos ϑ of the kinetic equation solution n(x, ϑ).
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which guarantees fulfilment of the group property Rτt = RτRt . These are just the RG
functional equations and transformations for a massless QFT model with one coupling [3].
In that case, ξ = Q2/µ2 is the ratio of a four-momentum Q squared to a ‘normalization’
momentum µ squared, and g is a coupling constant, while ḡ is the so-called effective coupling.

In general, we can consider transformations Ta ,

x̄i = f i(x, a), f i(x, a0) = xi, i = 1, . . . , n, (3)

depending on a real parameter a, where x ∈ R
n. A set G of these transformations forms a

one-parameter local group if the functions f i(x, a) satisfy the composition rule TbTa = Tφ(a,b),

f i(f i(x, a), b) = f i(x, φ(a, b)), φ(a, a0) = a, φ(a0, b) = b, (4)

where φ(a, b) is a three times continuously differentiable function of a and b. But any
composition law can be transformed [10, chapter 7] to the simplest form with φ(a, b) = a + b

and a0 = 0 in (3) that is equivalent to additive version of equations (1) and (2) with
a = ln t; b = ln τ and Tln t = Rt .

Geometrically, transformations (3) mean that any point x ∈ R
n is carried by these

transformations into the point x̄ whose locus is a continuous curve passing through x (called a
path curve of the group G). Group property (4) means that any point of a path curve is carried
by G into points of the same curve. The locus of the images Ta(x) is also called the G-orbit
of the point x. The correspondence between transformations (3) for φ(a, b) = ab and (1)
means that for RG transformations, a curve in the plane {x, g} representing the solution of a
physical problem is the path curve of the RG Rt . In other words, the solution of the problem
coincides with the Rt -orbit of a boundary manifold, the point {x = x0, g = g0}. Under the
RG transformations, the reference (boundary) point {x0, g0} is shifted to some other value
{x1, g1}, while the solution remains unaltered, i.e., the solution curve is the invariant manifold
of the group Rt (like the invariant charge in QFT [4]).

Hence, the general problem of seeking the RG transformations can be reformulated as
follows: the solution of the physical problem should coincide with the orbit of the RG.

In mathematical physics, a solution of a physical problem usually appears as a solution of
some BVP. Then, the corresponding RG transformation can be obtained from the symmetry
group related to this BVP with the BC condition also involved in the group transformation.
The key point here is that the relevant symmetry group is calculated by a regular procedure of
modern group analysis, provided the problem is formulated in terms of DEs (or IDEs).

Let a model be given by a system of kth-order DEs, identified with its frame,

Fσ (x, u, u(1), . . . , u(k)) = 0, σ = 1, . . . , s. (5)

In this paper, we use the terminology of differential algebra and notation for variables accepted
in group analysis [11]:

x = {xi}, u = {uα}, u(1) = {
uα

i

}
, u(2) = {

uα
ij

}
, . . . , (6)

where α = 1, . . . , m and i, j, . . . = 1, . . . , n. The variables x and u are respectively
called independent variables and differential variables, having the consecutive derivatives
u(1), u(2), . . . . Differential variables are related by a system of equations

uα
i = Di(u

α), uα
ij = Dj

(
uα

i

) = DjDi(u
α), . . . (7)

via the total differentiation operator

Di = ∂

∂zi
+ uα

i

∂

∂uα
+ uα

ij

∂

∂uα
j

+ · · · . (8)
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A locally analytic function of variables (6), F(x, u, u(1), . . . , u(k)) for example, with the
highest-order derivative k is called a differential function of the kth order, and a set of all such
functions with any values of k forms the space of differential functions A[x, u]. Any function
F ∈ A[x, u] yields a differential manifold [F ], determined by an infinite system of equations

[F ] : F = 0, DiF = 0, DiDjF = 0, . . . . (9)

The manifold [F ] is called the frame of the kth-order PDE

F

(
x, u,

∂u

∂x
, . . . ,

∂ku

∂xk

)
= 0. (10)

By definition, a system of sth-order DEs is said to be invariant under a group G if the frame of
the system is an invariant manifold for the extension of the group G to the sth-order derivatives
[10, p 209]. With an infinitesimal group generator

X = ξ i∂xi + ηα∂uα , ξ i, ηα ∈ A, (11)

with coordinates ξ i and ηα , which are functions of the group variables {xi, uα}, this definition
leads to an invariance criterion of the form

X(k)Fσ |[Fσ ] = 0, σ = 1, . . . , s, (12)

where X(k) denotes X extended to all the derivatives involved in Fσ and the symbol |[F ] means
evaluated on frame (9). Solving a system of linear homogeneous PDEs (called the determining
equations) for the coordinates ξ i and ηα gives a set of infinitesimal operators (11) (or group
generators) corresponding to the admitted vector field of the symmetry group G and forming
a Lie algebra L.

2.2. RGS construction: an idea and its simple realization

Let the Lie group G with generator

X = ξ t∂t + ξx∂x + η∂y (13)

be defined for the system of the first-order PDEs

yt = F(t, x, y, yx). (14)

The typical BVP for (14) is the Cauchy problem with boundary manifold defined by

t = 0, y = ψ(x). (15)

Solution of this Cauchy problem is the G-invariant solution iff for any generator (13), function
ψ satisfies the equation [12, section 29]

η(0, x, ψ) − ξx(0, x, ψ)∂xψ − ξ t (0, x, ψ)F (0, x, ψ, ∂xψ) = 0. (16)

The solution of Cauchy problem (14), (15) coincides with the orbit of the group G, and the
boundary manifold is not the invariant manifold of the group.

This example gives an instructive idea for constructing generators of RGSs. The
milestones here are (a) considering the BVP in the extended space of group variables that
involve parameters of BCs in group transformations, (b) calculating the admitted group using
the infinitesimal approach, (c) checking the invariance condition akin to (16) to find the
symmetry group with the orbit that coincides with the BVP solution, and (d) using the RGS
to find the improved (renormalized) solution of the BVP.
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The whole algorithm was described in detail in our previous publications [8, 9]; here
we only give a general grasp of the problem using a trivial example, the BVP for the Hopf
equation

vz + vvx = 0, v(0, x) = εU(x), (17)

where U is an invertible function of x. Introducing u = εv, we insert the boundary amplitude
directly in the input equation:

uz + εuux = 0, u(0, x) = U(x). (18)

For small values of εz � 1, i.e., near the boundary, z → 0, or for a small amplitude at the
boundary, ε → 0, a perturbation theory solution of (18) has the form of a truncated power
series in εz,

u = U − εzUUx + O((εz)2). (19)

It is obvious that this solution is invalid for large distances from the boundary, when εzUx � 1.
The RGS gives a way to improve the perturbation theory result and restore the correct structure
of the BVP solution in the vicinity of a singularity (in the event that such singularity appears
for some finite value of z).

With the goal of obtaining this symmetry, we extend the list of variables involved in the
group transformations, adding the parameter ε to the list of independent variables. We then
calculate the admitted symmetry group G with the generator

X = ξz∂z + ξx∂x + ξ ε∂ε + η∂u (20)

using the classical Lie calculational algorithm (see, e.g., [10]) with infinitesimal criterion (12).
Solving the determining equations gives the coordinates of generator (20),

ξz = ψ1, ξ x = εuψ1 + ψ2 + x(ψ3 + ψ4), ξ ε = εψ4, η = uψ3, (21)

where ψi, i = 2, 3, 4, are arbitrary functions of ε, u, and x − εuz and ψ1 being an arbitrary
function of all the group variables. These formulae define an infinite-dimensional Lie algebra
with four generators (in the case where amplitude ε is not involved in the transformation, we
have only three generators; see, e.g., [11, p 222])

X1 = ψ1(∂z + εu∂x), X2 = ψ2∂x,

X3 = ψ3(x∂x + u∂u), X4 = ψ4(ε∂ε + x∂x).
(22)

Suppose that a particular solution of BVP (18), u−W(z, x, ε) = 0, which defines an invariant
manifold of group (20), (21) is known. The corresponding invariance condition evaluated on
frame (18) is similar to (12):

(W − xWx)ψ
3 − Wxψ

2 − (εWε + xWx)ψ
4 = 0. (23)

This equation is valid for all z. Hence, it remains valid for z = 0, when W is replaced with
U(x). In this limit, z → 0, condition (23) gives a relation between the ψi, i = 2, 3, 4 (no
restrictions are imposed on ψ1), that can be easily prolonged on z �= 0,

ψ2 = −χ(ψ3 + ψ4) + (u/Uχ)ψ3, χ = x − εuz, (24)

where the derivative Uχ should be expressed, due to BC, either in terms of χ or u. By
substituting (24) in (21), we obtain a group of a smaller dimension with generators

R1 = ψ1(∂z + εu∂x), R2 = uψ3[(εz + 1/Uχ)∂x + ∂u], R3 = εψ4(zu∂x + ∂ε).

(25)
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The above procedure, which transforms (22) to (25), is the restriction of the group (20) on a
particular solution.

The BVP solution defines a manifold, that, by construction, turns to be invariant for any
generator Ri. Hence, (25) defines the desired RGSs. This means that the BVP solution can
be constructed by use any of generators in (25), the generator R3 for example. Without loss
of generality, we choose εψ4 = 1 and obtain the finite RG transformations (a is a group
parameter)

x ′ = x + azu, ε′ = ε + a, z′ = z, u′ = u, (26)

where z and u are invariants of the RG transformations while the transformations of ε and x
are translations, which also depend on z and u in the case of x. For ε = 0, in view of (19), we
have x = H(u), where H(u) is a function inverse to U(x). Eliminating a, z, u from (26) and
omitting the primes on variables, we obtain the desired solution of BVP (18) in the implicit
form

x − εzu = H(u). (27)

This in fact is the improved perturbation theory solution (19), which is valid not only for small
εz � 1, provided dependence (27) can be resolved uniquely. Depending upon H(u) it gives
either proper singular behaviour at some finite z → zsing or correct asymptotic behaviour at
z → ∞.

The peculiarity of the procedure for constructing RGSs is the multi-choice first step,
which depends on how the boundary conditions are formulated and the form in which the
admitted symmetry group is calculated. For example, instead of calculating the Lie point
symmetry group, we can consider the Lie–Bäcklund symmetries [15] with the canonical
generator R = κ∂u, where κ depends not only on z, x, ε and u but also on higher-order
derivatives of u. We can seek κ in the form of a power series in ε, and invariance condition
(23) is formulated as vanishing of κ at z = 0. Depending on the choice of the zeroth-order
term representation, we obtain either an infinite or a truncated power series for κ , for example,
a form linear in ε,

R = κ∂u, κ = 1 − ux

Ux(u)
− εzux. (28)

This RG generator (28) is equivalent to the Lie point generator R2 in (25) and therefore gives
the same result.

Another possibility for calculating RGSs for BVP (18) is offered by taking some additional
differential constraints consistent with BCs and input equations into account. For example,
if the boundary condition in (18) is linear in its argument, U(x) = −x, the differential
constraint can be chosen as uxx = 0; this equality reflects the invariance of the original
equation with respect to the second-order Lie–Bäcklund symmetry group. Calculating the
Lie point symmetry group for the joint system of this constraint and the Hopf equation gives
another way to find RGSs for BVP (18).

The above example demonstrates the key features of the RGS method in mathematical
physics. The details of the general approach are discussed in the following section.

3. The scheme of the RG algorithm for nonlocal problems

This formulation preserves the former general construction scheme of the RG algorithm
(shown in the figure) as four consecutive steps [8, 9]:
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Perturbative
BVP solution

Basic
model

Basic manifold 

RGS generators

Generators of group 

RG invariant solution

I

II

III

IV

(I) constructing the basic manifold,
(II) calculating the admitted symmetry group G,

(III) restricting it on the particular BVP solution and constructing RG, and
(IV) seeking an analytic solution.

But how these steps are realized varies significantly, which is most vividly shown in
the first two steps of the algorithm [13, 14], related to constructing the nonlocal basic
manifold and calculating the admitted symmetry group. Here, in view of the absence of
a regular computational algorithm (similar to the Lie algorithm for DEs), various realizations
are possible in performing step II. As an illustration, we choose and elaborate the variant
based on using a canonical operator [13, 14, 18, 19]. Having in mind a reduced description of
the solution in terms of the integrated characteristic, the solution functional, we describe the
procedure for prolonging the RG operator on nonlocal variables [13, 14]. It is essential that
knowing a solution in an explicit form is not required in this case.

3.1. Constructing the RG manifold

The initial issue is to construct the RGS and appropriate transformations that involve the
parameters of partial solution. Therefore, the purpose of step I is to include all the parameters,
both from the equations and from the BCs on which a particular solution depends, in group
transformations in one or another way. This purpose is achieved by constructing a special
manifold RM given by a system that consists of s kth-order DEs (5) and q nonlocal relations

Fσ (z, u, u(1), . . . , u(r), J (u)) = 0, σ = 1 + s, . . . , q + s. (29)

The nonlocal variables J (u) here are introduced by integrations,

J (u) =
∫

F(u(z)) dz. (30)

The presence of relations (29) in the system determiningRM characterizes the basic difference
between the case of a nonlocal problem and the case of a BVP for DEs, for which RM is a
differential manifold.

3.2. Calculating the transformation group G

Step II is to calculate the widest admitted symmetry group G for system (5), (29). An essential
change of the RG algorithm is required here compared with its realization for a differential
manifold RM. Indeed, in application to an RM defined only by DE system (5), the question
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is about a local group of transformations in a space of differential functions A, for which
system (5) remains unchanged.

Meanwhile, the classical Lie algorithm using the infinitesimal approach seems to be
inapplicable to a manifold RM set by system (5), (29). The issue is that the RM in this case
is not determined locally in the space of differential functions. Therefore, the main advantage
of the Lie computational algorithm, namely, representation of the determining equations as
an over-determined system of equations is not realized here. Furthermore, the procedure
for prolongation of the group operator of point transformations on nonlocal variables is not
defined in the framework of classical group analysis.

In modifying the RG algorithm, we rely on the direct method for calculating symmetries
advanced in [16, 17] for finding symmetries for Boltzmann kinetic equation, the equations
of motion of viscous-elastic media, and the Vlasov–Maxwell equations in the kinetic theory
of plasma. This method is based on a generalization of the symmetry group, the so-called
Lie–Bäcklund symmetry group (the terms ‘higher’ or ‘generalized’ symmetry are also used),
defined by the generator of form (11) prolonged on all higher-order derivatives,

X = ξ i∂zi + ηα∂uα + ζ α
i ∂uα

i
+ ζ α

i1i2
∂uα

i1 i2
+ · · · ,

ζ α
i = Di(�

α) + ξ juα
ij , ζ α

i1i2
= Di1Di2(�

α) + ξ juα
ji1i2

, �α = ηα − ξ iuα
i ,

(31)

with the coordinates ξ i([z, u]), ηα([z, u]), ζ α
i ([z, u]), . . . being differential functions from the

space A. The set of all Lie–Bäcklund operators forms an infinite-dimensional Lie algebra
LB, and an operator of the form X∗ = ξ iDi is the Lie–Bäcklund operator for the differential
function ξ i([z, u]). The set L∗ of operators X∗ forms an ideal in LB. This property allows
introducing the notion of the equivalence of two Lie–Bäcklund operators X1, X2 ∈ LB if
X1 − X2 ∈ L∗ (written as X1 ∼ X2). In particular, any Lie–Bäcklund operator X ∈ LB is
equivalent to operator (31) with ξ i = 0,

X ∼ Y = X − ξ iDi = �α∂uα , �α ≡ ηα − ξ iuα
i . (32)

The operator Y is known as the canonical representation of X, and in notation (32), we imply
the prolongation of the action of the operator on all higher-order derivatives according to
formulae (31). It is essential that in the group of infinitesimal transformations G with operator
(32) and the parameter a, only the dependent variables uα change, while the independent
variables zi remain unchanged:

u′α = uα + a�α + O(a2), z′i = zi . (33)

This property allowed formulating the concept of symmetry groups of IDEs of form (29) as
a local group of transformations G with operator (32), for which the form of the function Fσ

remains unchanged for any value of the group parameter a. Differentiating the appropriate
invariance condition (written for the function Fσ dependent on the transformed dependent
variable u′α) with respect to the group parameter a and passing to the limit a → 0 yields
the determining equations. In contrast to the basic DE case, these determining equations are
generally nonlocal.

Using the canonical operator Y, we can write the invariance criterion for equation (29)
with respect to an admitted group in an infinitesimal form:

YFσ |[Fσ ] = 0, σ = 1 + s, . . . , q + s, where Y ≡
∫

dz �(z)
δ

δu(z)
. (34)

Meaning a generalization of the action of the canonical group operator not only on differential
functions but also on functionals, we use variational differentiation [17] in the definition
of Y here. It can be verified by a direct calculation that the action of the operator Y on
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any differential function and its derivatives, u, uz, . . . for example, gives the usual result:
Yu = �, Yuz = Dz(�), etc. Hence, if Fσ = 0 is a usual DE, then formulae (34) result in
local determining equations, and if Fσ = 0 has the form of a system of IDEs, then formulae
(34) can be regarded as nonlocal determining equations, dependent on both local and nonlocal
variables.

Treating local and nonlocal variables in the determining equations as independent variables
allows separating these equations into local and nonlocal equations. The procedure for solving
the local determining equations is performed in a standard way, using the Lie algorithm based
on splitting of a system of overdetermined equations with respect to local variables and their
derivatives. As a result, the expressions for the coordinates of the group operator are found,
determining the so-called group of intermediate symmetries [17], which are used further
in analysing the nonlocal determining equations. The procedure for solving the nonlocal
determining equations is performed similarly, by substituting the coordinates of the found
intermediate symmetry group operator in the nonlocal determining equations and splitting
them using variational differentiation. Hence, constructing the symmetries for the nonlocal
equations also becomes an algorithmic procedure [19]. These operations generalize the second
step of the algorithm to the case where RM is an integral or integro-differential manifold.

Concluding this subsection we describe the operation of prolonging a Lie point symmetry
group on the nonlocal variable defined, for example, by integral relation (30). To execute this
operation we first write the group operator in the canonical form Y and then formally prolong
it on the nonlocal variable J :

Y + �J ∂J ≡ �∂u + �J ∂J . (35)

The integral relation between � and �J is obtained by applying operator (35) to
equation (30). Substituting there explicit expression for coordinate � of the operator Y and
calculating resulting integrals, we obtain the required coordinate �J of the prolonged operator,

�J =
∫

δJ (u)

δu(z)
�(z) dz ≡

∫
δF(u(z′))

δu(z)
�(z) dz dz′ =

∫
Fu�(z) dz. (36)

For brevity, only the integration argument of a generator’s coordinate is specified here.

3.3. Restricting the group G on the solution and constructing RG

The group G found in step II and determined by operators (31) and (32) is generally wider
than the RG of interest, which is related to a particular solution of a BVP. Hence, to obtain
the RGS, we need step III, restricting the group G on a manifold determined by this particular
solution. From the mathematical standpoint, this procedure consists in checking the vanishing
conditions for a linear combination of coordinates �α

j of a canonical operator equivalent to
(31) on some particular BVP solution Uα(z),


∑

j

Aj�α
j ≡

∑
j

Aj
(
ηα

j − ξ i
ju

α
i

)



∣∣∣∣∣∣
uα=Uα(z)

= 0. (37)

The form of the condition set by relation (37) is common for any solution of the BVP, but how
the restriction procedure of a group is realized may differ in each partial case. In the general
scheme (given at the beginning of the section), it is related to the dashed arrow connecting the
‘initial object’ (a perturbative solution of a particular BVP) to the object arising as a result of
step III.

In calculating combination (37) on a particular solution Uα(z), the latter is transformed
from a system of DEs for group invariants to algebraic relations. Note two consequences of
step III. First, the restriction procedure results in a set of relations between Aj and thus ‘links’
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the coordinates of various group operators Xj admitted by RM (5), (29). Second, it (partially
or completely) eliminates an arbitrariness that can arise in the values of the coordinates ξ i and
ηα in the case of an infinite group G.

As a rule, the procedure of restricting the group G reduces its dimension. After performing
this procedure a general element (31) of a new groupRG is represented by a linear combination
of new generators Ri with coordinates ξ̂ i and η̂α and arbitrary constants Bj :

X ⇒ R =
∑

j

BjRj , Rj = ξ̂ i
j ∂xi + η̂α

j ∂uα . (38)

The set of operators Rj , each containing the required solution of a problem in the invariant
manifold, defines a group of transformations RG, which we also call RG (by analogy with the
RG for models with DEs).

3.4. Constructing an RG-invariant solution

The three steps described above completely form the regular algorithm for constructing the
RGS, but to finish a final step is needed. Step IV uses the RGS operators to find analytic
expressions for new, improved BVP solutions (compared with the input perturbative solution).

From the mathematical standpoint, realizing this step involves use of RG-invariance
conditions set by a joint system of equations (5) and (29) and the vanishing conditions for a
linear combination of the coordinates �̂α

j of the canonical operator equivalent to (38),∑
j

Rj �̂α
j ≡

∑
j

Bj
(
η̂α

j − ξ̂ i
j u

α
i

) = 0. (39)

The need to use RM in constructing the BVP solution is shown in the scheme by the dashed
arrow connecting these objects.

Specification of step IV concludes the description of regular algorithm of RGS
construction for models with IDEs. We note that last the two steps are basically the same as
for models with DEs. The following section contains two examples showing the ability of the
upgraded RGS algorithm.

4. Constructing RGSs for integral models

4.1. The example with solution functionals of Hopf equation

Return now to a simple illustrative example, discussed in section 2, i.e., an initial problem for
Hopf equation (17). We have shown that its solution can be constructed by use any of RG
algebra generators (25). Suppose we are interested not in the whole solution but only in some
its characteristic at a given point, for example, a value of its first derivative at x = 0, which
can be formally introduced by a linear functional of u,

ux(z, 0) ≡ u0
x = −

∫ +∞

−∞
dx δ′(x)u(t, x). (40)

The z dependence of u0
x can be easily restored by prolongation of a linear combination of

RG generators (25) on solution functional (40). We again use the last generator in (25) in its
simplest form with εψ4 = 1. Write then this generator in the canonical form and calculate
its prolongation using formulae (35) and (36). Restricting the RG operator obtained after this
prolongation on the space of the group variables

{
z, ε, u0

x

}
, we obtain the RG generator for

solution functional (40). For the case U = −x, one arrives at generator

R4 = ∂ε − z
(
u0

x

)2
∂u0

x
. (41)
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The initial condition u0
x(z = 0) = −1 is known. Hence, use of invariant of this generator,

J 0 = εz − 1
/
u0

x = 1, restores the desired dependence u0
x = −1/(1 − εz), which is valid

from the point z = 0 up to the singularity point zsing = 1/ε. Note that this result is obtained
without constructing the BVP solution, using only an appropriate RGS. At first glance, the
example considered and the construction performed seems clumsy, and it is easier to proceed
from trivial solution (27). But for more complex situations, an explicit form of the solution is
often unknown, but it is possible to construct the RGS (see, e.g., [13]).

4.2. The example of the RGS for solution of plasma kinetic equation

Here, in contrast to the previous (differential model) example, we consider the case where
integral relations form the problem nucleus. A vivid example is the model used in the
plasma kinetic theory to describe the Coulomb explosion of submicron plasmas in the field of
multiterrawatt femto-second laser pulses that leads to ion acceleration at multi-MeV energies
[26, 27]. The mechanisms and characteristics of ions triggered by the interaction of a short
laser pulse with plasma are currently interesting because of their possible applications to
novel-neutron-source development, x-ray source, proton radiography and isotope production.

The macroscopic state of cluster particles is governed by distribution functions f (for
cluster ions with the mass M and charge Ze) that depend on time t, coordinate x and velocity
v of a particle (for simplicity, we consider the one-dimensional plane geometry). Evolution
of the distribution functions is described by the solution of the Cauchy problem for Vlasov
kinetic equation supplemented by Poisson equation for electric field E,

ft + vfx + (Ze/M)Efv = 0, Ex − 4πZe

∫
dv f = 0, f |t=0 = f0(x, v). (42)

Study of even such a simplified model analytically meets essential difficulties, but use of the
RG algorithm allows obtaining solutions for various initial particle distribution functions and
finding the density, mean velocity and energy spectrum of the particles. To construct the
RGS, consider a set of local and nonlocal equations in (42) and the evident constraint Ev = 0
for RM. The Lie group of point transformations admitted by this manifold is calculated as
indicated in [18, 19] and consists of the six generators

X0 = ∂t , X1 = ∂x, X2 = t∂x + ∂v, X3 = x∂x + v∂v − f ∂f + E∂E,

X4 = 2t∂t + x∂x − v∂v − 3f ∂f − 2E∂E, X5 = (t2/2)∂x + t∂v + (M/Ze)∂E,
(43)

describing time and space translations (X0 and X1), Galilean boosts (X2), dilations (X3 and
X4) and the generator X5. Finite transformations defined by X5 correspond to transition to a
coordinate system moving linearly with constant acceleration with respect to the laboratory
system. Two commuting generators in (43), namely, the generator of Galilean boosts and
the generator of the transition to a uniformly accelerated frame, appear as the desired RGS
generators,

R5 = (t2/2)∂x + t∂v + (M/Ze)∂E, R6 = t∂x + ∂v. (44)

Successive application of finite transformations defined by these generators shifts the initial
coordinates h and velocities ν to new values in the phase space,

R(t, h, ν) = h + νt + (Ze/2M)E(h)t2, U(t, h, ν) = ν + (Ze/M)E(h)t, (45)

function E(h) being defined by the initial conditions

E(h) = 4πZe

∫ h

0
dy

∫ ∞

−∞
dv f0(y, v). (46)

The distribution function is the invariant of RGS generators (44) and is defined by f0(h, ν)

for any specified values h and ν (i.e. for a given group of particles). The distribution function
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that solves (42) is obtained by summing over all groups of particles, i.e. by integrating over
the initial velocities and coordinates of plasma particles,

f (t, x, v) =
∫ ∞

−∞
dν

∫ ∞

−∞
dh f0(ν, h)δ(x − R(t, h, ν))δ(v − U(t, h, ν)). (47)

For ‘cold’ cluster particles, f0 ∝ δ(ν), we need only one RG generator, R5, to construct
the BVP solution. The zeroth and first moments of the distribution function with respect to
velocity v yield the density and mean velocity distributions for the cluster ions, which allows
us to estimate the maximum energy of the accelerated ions, the ion energy spectrum and
the relation between this spectrum and the initial ion density distribution [26–28]. A similar
approach to the spherical geometry [27] shows that an inhomogeneity of the initial cluster
density distribution leads to a solution singularity after a finite time interval, even for initially
immovable ions.

5. Conclusion

We have presented examples showing how the new algorithm applies to integro-differential
systems. We presented a simple methodological, illustrative example here, analysing a solution
characteristic for the Hopf equation (also see [13]). Evidence for the efficiency of the RGS
algorithm in treating problems that had not yet been solved by other approaches is provided
by less trivial examples: calculating the expansion of plasma bunches and ion clusters and
the acceleration of ions in plasma kinetic theory in the plane [20, 21] and spherical [22]
geometry; calculating integral characteristics for this expansion without knowing the solution
itself [21, 23]; calculating nonlinear dielectric permittivities in plasma for an arbitrary order
of nonlinearity [24]; obtaining a reduced description of the light beam intensity behaviour on
the beam axes [13, 14, 24]; establishing an interrelation between physical quantities in various
representations related by some integral transformation [24]; obtaining an approximate analytic
description of the nonlinear Langmuir oscillations in expanding plasma via an approximate
RGS for the integro-differential Vlasov–Poisson model with a self-consistent electromagnetic
field [25].

In formulating and discussing the analytic form of the results in our publications
concerning the RGS algorithm, we emphasize the role of invariants of appropriate RG
operators. The manifested common regularities were considered in [24, 13] and formulated
as the so-called �-theorem, which is a generalization of the well-known �-theorem. We
considered the relation of representations of BVP solutions with the general form predicted
by the concept of functional self-similarity [29, 30] and the well-known principles of group
analysis.

The results described in this report testify the universality of the RGS method. Therefore,
they allow us to look for a further expansion of the class of problems that allow us to use the
RGS method and to new objects for which the use of RGS algorithm is not yet a standard
procedure. We have in mind infinite systems of integro-differential equations, similar to
systems for correlation functions in statistical physics and to systems of the equations for
‘dressed’ Green’s functions (propagators and vertex functions) in QFT.
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